Anatomical basis of lingual hydrostatic deformation.

نویسندگان

  • Richard J Gilbert
  • Vitaly J Napadow
  • Terry A Gaige
  • Van J Wedeen
چکیده

The mammalian tongue is believed to fall into a class of organs known as muscular hydrostats, organs for which muscle contraction both generates and provides the skeletal support for motion. We propose that the myoarchitecture of the tongue, consisting of intricate arrays of muscular fibers, forms the structural basis for hydrostatic deformation. Owing to the fact that maximal diffusion of the ubiquitous water molecule occurs orthogonal to the short axis of most fiber-type cells, diffusion-weighted magnetic resonance imaging (MRI) measurements can be used to derive information regarding 3-D fiber orientation in situ. Image data obtained in this manner suggest that the tongue consists of a complex juxtaposition of muscle fibers oriented in orthogonal arrays, which provide the basis for multidirectional contraction and isovolemic deformation. From a mechanical perspective, the lingual tissue may be considered as set of continuous coupled units of compression and expansion from which 3-D strain maps may be derived. Such functional data demonstrate that during physiological movements, such as protrusion, bending and swallowing, hydrostatic deformation occurs via synergistic contractions of orthogonally aligned intrinsic and extrinsic fibers. Lingual deformation can thus be represented in terms of models demonstrating that synergistic contraction of fibers at orthogonal or near-orthogonal directions to each other is a necessary condition for volume-conserving deformation. Evidence is provided in support of the supposition that hydrostatic deformation is based on the contraction of orthogonally aligned intramural fibers functioning as a mechanical continuum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Model of the Octopus Arm . I .

[PDF] [Full Text] , November 1, 2005; 208 (21): iv. J Exp Biol Laura Blackburn AGILE ANIMALS [PDF] [Full Text] [Abstract] , October 1, 2006; 209 (19): 3697-3707. J Exp Biol Christine L. Huffard between primary and secondary defenses (Cephalopoda: Octopodidae): walking the line Abdopus aculeatus Locomotion by [PDF] [Full Text] [Abstract] , September 1, 2007; 98 (3): 1775-1790. J Neurophysio...

متن کامل

Experimental and Finite Element Analyses of the Hydrostatic Cyclic Expansion Extrusion (HCEE) Process with Back-Pressure

It is generally known that severe plastic deformation processes with back pressure not only apply higher hydrostatic stress and more deformation compared to what a regular process can apply to a workpiece but also prevent surface defects in the workpiece during the process. Hydrostatic cyclic expansion extrusion (HCEE) was developed recently for processing long ultrafine-grained metals and allo...

متن کامل

Hydrostatic compression on polypropylene foam

Models currently used to simulate the impact behaviour of polymeric foam at high strain rates use data from mechanical tests. Uniaxial compression is the most common mechanical test used, but the results from this test alone are insufficient to characterise the foam response to three-dimensional stress states. A new experimental apparatus for the study of the foam behaviour under a state of hyd...

متن کامل

Effects of Gravitational and Hydrostatic Initial Stress on a Two-Temperature Fiber-Reinforced Thermoelastic Medium for Three-Phase-Lag

The three-phase-lag model and Green–Naghdi theory without energy dissipation are employed to study the deformation of a two-temperature fiber-reinforced medium with an internal heat source that is moving with a constant speed under a hydrostatic initial stress and the gravity field.  The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions ...

متن کامل

Parametric study of nonlinear buckling capacity of short cylinders with Hemispherical heads under hydrostatic pressure

This study investigates the buckling behavior of short cylindrical shells with hemi-spherical heads subjected to hydrostatic pressure. It is assumed that the length of the cylindrical part is smaller than or equal to its diameter while its material may be dif-ferent from that of hemispherical heads. Finite element analysis was used to seek out the effect of geometric parameters such as thicknes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2007